
Copyright © Siemens AG 2008.

Corporate Technology

System and Application Analysis with LTTng
Project examples

 Serial input latency
 Sporadic delay in high prio application thread

How LTTng was used in Siemens projects to solve problems
Gernot Hillier, CT SE 2

These slides can be distributed under the conditions of the “Creative Commons BY-ND 3.0
license”, see http://creativecommons.org/licenses/by-nd/3.0/.

http://creativecommons.org/licenses/by-nd/3.0/

page 2 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Serial input latency

Situation

 target hardware connected to serial port of „fast machine“
(Multicore, fast 64bit CPUs, ...)

high prio application has to react on signal from serial port within 10 ms

expected time for reading character from serial port: << 1ms

Problem

Unclear, undeterministic latency (several ms) from arrival of character
to wakeup of application

Possible reasons: locking, priority inversion, system load, ...?

page 3 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Serial input latency

Method:

 Trace simple testcase: bash shell prompt on serial port (does read(), write() in an
endless loop to echo characters)

 Filter out events around IRQ arrival, then filter out right CPU

Trace output, part 1/2:

kernel_arch_syscall_entry: 308.506794 (cpu_3), 3051, bash, SYSCALL { syscall_id = 0

[sys_read+0x0/0xaa], ip = 0x7f29c1040f40 } => application blocks on read()

[...]

kernel_irq_entry: 310.147709 (cpu_3), 0, swapper, IRQ { irq_id = 4, kernel_mode = 1,

ip = 18446744071564210684 } => char arriving on serial line, IRQ 4 asserted

kernel_timer_set: 310.147722 (cpu_3), 0, swapper, IRQ { expires = 4294944731, function =

0xffffffff80245288 [...] } => timer set, calling function delayed_work_timer_fn()

kernel_irq_exit: 310.147728 (cpu_3), 0, swapper, SYSCALL { handled = 1 }

=> now CPU does nothing (no event) for nearly 3 ms

page 4 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Serial input latency

Trace output, part 2/2:

kernel_irq_entry: 310.150507 (cpu_3), 0, swapper, IRQ { irq_id = 239, kernel_mode = 1, ip =

18446744071564210684 } => timer interrupt occurs (HZ = 250)

[...]

kernel_sched_schedule: 310.150549 (cpu_3), 14, events/3, SYSCALL { prev_pid = 0,

next_pid = 14, prev_state = 0 } => workqueue thread for CPU 3 gets scheduled

kernel_sched_try_wakeup: 310.150562 (cpu_3), 14, events/3, SYSCALL { pid = 3051, state

= 1 } => workqueue thread wakes up ...

kernel_sched_schedule: 310.150570 (cpu_3), 3051, bash, SYSCALL { prev_pid = 14,

next_pid = 3051, prev_state = 1 } => ... our target process

kernel_arch_syscall_exit: 310.150585 (cpu_3), 3051, bash, USER_MODE { ret = 1 }

=> read() returns, target application ...

kernel_arch_syscall_entry: 310.150600 (cpu_3), 3051, bash, SYSCALL { syscall_id = 1

[sys_write+0x0/0xaa], ip = 0x7f29c1040fc0 } => ... can finally echo character

page 5 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Serial input latency

Further steps

Code review of Linux serial driver, search for usage of work queues
(serial8250_interrupt → serial8250_handle_port → receive_chars → tty_flip_buffer_push

→ schedule_delayed_work → queue_delayed_work → queue_delayed_work_on)

Result: Linux serial code uses delayed work queues (delay: 1 jiffy) to
handle incoming characters

Reason: don't wake up userspace on each character
=> reduce overhead, increase throughput for „normal applications“

Conclusion

 throughput optimization in Linux serial code conflicts with our use case

Own, simple serial receive routine was implemented for critical path

page 6 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Unclear delay in high prio application thread

Situation

multi-threaded application with a number of low-prio workers and high-
prio thread with „soft realtime“ requirements

 large C++ application using rich middleware

 full code review (down to system call level) very time-consuming

Problem

unclear, sporadic delays at some code points

Possible reasons: system load, locking, application problems, ...?

page 7 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Unclear delay in high prio application thread

Method:

 roughly identify problematic code points with application time stamping

 mark problematic code passages with invalid syscalls (syscall 600 at start of code
point, 601 after code point if delay too high); LTTng userspace markers not ready

 Filter out events between syscalls, then filter out right CPU

Trace output, first try (excerpt):

kernel_arch_syscall_entry: 565.743 (cpu_5), 3309, PrioThread, { syscall_id = 600 }

kernel_arch_syscall_exit: 565.743 (cpu_5), 3309, PrioThread, { ret = -38 }

kernel_sched_schedule: 565.743 (cpu_5), 0, swapper, { prev_pid = 3309, next_pid = 0,

prev_state = 2 } => kernel switches to idle task for unknown reason

kernel_arch_trap_entry: 565.774 (cpu_5), 3309, PrioThread, { trap_id = 14, ... } => process

returned from page fault after 30 ms!

kernel_arch_syscall_entry: 565.774 (cpu_5), 3309, PrioThread, { syscall_id = 601 }

page 8 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Unclear delay in high prio application thread

Method:

 Review kernel code => trace marker in page fault is too late

 Add additional trace markers to arch/x86/mm/fault.c:do_page_fault

Trace output, second try (excerpt):

kernel_arch_syscall_entry: 575.226 (cpu_5), 3309, PrioThread, { syscall_id = 600 }

kernel_arch_syscall_exit: 575.226 (cpu_5), 3309, PrioThread, { ret = -38 }

kernel_arch_page_fault_entry: 575.226 (cpu_5), 3309, PrioThread { ip = 0x7f1a3c073d9c }

=> theory confirmed, delay is caused by page fault

kernel_arch_page_fault_addr: 575.226 (cpu_5), 3309, PrioThread, { addr =

139735431535128, ip = 0x7f1a3c0 } => additional trace point to get faulting address

kernel_sched_schedule: 575.226 (cpu_5), 3336, WorkThread, { prev_pid = 3309, next_pid =

3336 } => This time, another low prio thread is runnable and scheduled

kernel_arch_trap_entry: 575.258 (cpu_5), 3309, PrioThread, { trap_id = 14, ... }

kernel_arch_syscall_entry: 575.258 (cpu_5), 3309, PrioThread, { syscall_id = 601 }

page 9 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Unclear delay in high prio application thread

Further steps

decoding of page faulting address (with the help of /proc/<pid>/maps)
=> mmaped area on disk

code review for access to mmaped disk area

Conclusion

commonly used application function used by high prio thread caused
access to mmaped area on disk

application code restructuring to get rid of this access

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9

