SIEMENS

Corporate Technology

System and Application Analysis with LTTng

Project examples

" Serial input latency
" Sporadic delay in high prio application thread

How LTTng was used in Siemens projects to solve problems
Gernot Hillier, CT SE 2

These slides can be distributed under the conditions of the “Creative Commons BY-ND 3.0
license”, see http://creativecommons.org/licenses/by-nd/3.0/.

Copyright © Siemens AG 2008.


http://creativecommons.org/licenses/by-nd/3.0/

SIEMENS

Serial input latency

Situation

"target hardware connected to serial port of ,fast machine”
(Multicore, fast 64bit CPUs, ...)

"high prio application has to react on signal from serial port within 10 ms

" expected time for reading character from serial port: << 1ms

Problem

" Unclear, undeterministic latency (several ms) from arrival of character
to wakeup of application

"Possible reasons: locking, priority inversion, system load, ...7

<licensed under Creative Commons, BY-ND>
page 2 12.2008 Gernot Hillier, CT SE 2 © Siemens AG, Corporate Technology



SIEMENS

Serial input latency

Method:

" Trace simple testcase: bash shell prompt on serial port (does read(), write() in an
endless loop to echo characters)

" Filter out events around IRQ arrival, then filter out right CPU

Trace output, part 1/2:

kernel_arch_syscall_entry: 308.506794 (cpu_3), 3051, bash, SYSCALL { syscall_id =0
[sys_read+0x0/0xaa], ip = 0x7f29¢c1040f40 } => application blocks on read()

[...]

kernel_irg_entry: 310.147709 (cpu_3), 0, swapper, IRQ { irq_id = 4, kernel_mode =1,

ip = 18446744071564210684 } => char arriving on serial line, IRQ 4 asserted
kernel_timer_set: 310.147722 (cpu_3), 0, swapper, IRQ { expires = 4294944731, function =
Oxffffffff80245288 [...] } => timer set, calling function delayed work timer fn()
kernel_irqg_exit: 310.147728 (cpu_3), 0, swapper, SYSCALL { handled =1}

=> now CPU does nothing (no event) for nearly 3 ms
<licensed under Creative Commons, BY-ND>

page 3 12.2008 Gernot Hillier, CT SE 2 © Siemens AG, Corporate Technology



SIEMENS

Serial input latency

Trace output, part 2/2:

kernel_irg_entry: 310.150507 (cpu_3), 0, swapper, IRQ { irq_id = 239, kernel_mode =1, ip =
18446744071564210684 } => timer interrupt occurs (HZ = 250)

[...]

kernel_sched_schedule: 310.150549 (cpu_3), 14, events/3, SYSCALL { prev_pid = 0,
next_pid = 14, prev_state = 0 } => workqueue thread for CPU 3 gets scheduled
kernel_sched_try wakeup: 310.150562 (cpu_3), 14, events/3, SYSCALL { pid = 3051, state
=1 } => workqueue thread wakes up ...

kernel_sched_schedule: 310.150570 (cpu_3), 3051, bash, SYSCALL { prev_pid = 14,
next_pid = 3051, prev_state =1 } => ... our target process

kernel_arch_syscall_exit: 310.150585 (cpu_3), 3051, bash, USER_MODE {ret =1}

=> read() returns, target application ...

kernel_arch_syscall_entry: 310.150600 (cpu_3), 3051, bash, SYSCALL { syscall_id =1
[sys_write+0x0/0xaal, ip = 0x7f29¢c1040fc0 } => ... can finally echo character

<licensed under Creative Commons, BY-ND>
page 4 12.2008 Gernot Hillier, CT SE 2 © Siemens AG, Corporate Technology



SIEMENS

Serial input latency

Further steps

" Code review of Linux serial driver, search for usage of work queues
(serial8250_interrupt - serial8250 handle port - receive chars = tty flip_buffer_push
- schedule delayed work -» queue_delayed work - queue_delayed_work_on)

"Result: Linux serial code uses delayed work queues (delay: 1 jiffy) to
handle incoming characters

"Reason: don't wake up userspace on each character
=> reduce overhead, increase throughput for ,normal applications”

Conclusion
"throughput optimization in Linux serial code conflicts with our use case

"Own, simple serial receive routine was implemented for critical path

<licensed under Creative Commons, BY-ND>
page 5 12.2008 Gernot Hillier, CT SE 2 © Siemens AG, Corporate Technology



SIEMENS

Unclear delay in high prio application thread

Situation

" multi-threaded application with a number of low-prio workers and high-
prio thread with ,soft realtime” requirements

"large C++ application using rich middleware
" full code review (down to system call level) very time-consuming

Problem
"unclear, sporadic delays at some code points

"Possible reasons: system load, locking, application problems, ...?

<licensed under Creative Commons, BY-ND>
page 6 12.2008 Gernot Hillier, CT SE 2 © Siemens AG, Corporate Technology



SIEMENS

Unclear delay in high prio application thread

Method:

" roughly identify problematic code points with application time stamping

" mark problematic code passages with invalid syscalls (syscall 600 at start of code
point, 601 after code point if delay too high); LTTng userspace markers not ready

" Filter out events between syscalls, then filter out right CPU

Trace output, first try (excerpt):

kernel_arch_syscall_entry: 565.743 (cpu_5), 3309, PrioThread, { syscall_id = 600 }
kernel_arch_syscall_exit: 565.743 (cpu_5), 3309, PrioThread, { ret = -38 }
kernel_sched_schedule: 565.743 (cpu_5), 0, swapper, { prev_pid = 3309, next_pid = 0,
prev_state = 2 } => kernel switches to idle task for unknown reason

kernel_arch_trap_entry: 565.774 (cpu_5), 3309, PrioThread, { trap_id = 14, ... } => process
returned from page fault after 30 ms!

kernel_arch_syscall_entry: 565.774 (cpu_5), 3309, PrioThread, { syscall_id = 601 }

<licensed under Creative Commons, BY-ND>
page 7 12.2008 Gernot Hillier, CT SE 2 © Siemens AG, Corporate Technology



SIEMENS

Unclear delay in high prio application thread

Method:

" Review kernel code => trace marker in page fault is too late

" Add additional trace markers to arch/x86/mm/fault.c:do_page_fault

Trace output, second try (excerpt):

kernel_arch_syscall_entry: 575.226 (cpu_5), 3309, PrioThread, { syscall_id = 600 }
kernel_arch_syscall_exit: 575.226 (cpu_5), 3309, PrioThread, { ret = -38 }
kernel_arch_page_fault_entry: 575.226 (cpu_5), 3309, PrioThread { ip = 0x7f1a3c073d9c }
=> theory confirmed, delay is caused by page fault

kernel_arch_page_fault_addr: 575.226 (cpu_5), 3309, PrioThread, { addr =
139735431535128, ip = 0x7f1a3c0 } => additional trace point to get faulting address
kernel_sched_schedule: 575.226 (cpu_5), 3336, WorkThread, { prev_pid = 3309, next_pid =
3336 } => This time, another low prio thread is runnable and scheduled
kernel_arch_trap_entry: 575.258 (cpu_5), 3309, PrioThread, { trap_id =14, ... }
kernel_arch_syscall_entry: 575.258 (cpu_5), 3309, PrioThread, { syscall_id = 601 }

<licensed under Creative Commons, BY-ND>
page 8 12.2008 Gernot Hillier, CT SE 2 © Siemens AG, Corporate Technology



SIEMENS

Unclear delay in high prio application thread

Further steps

" decoding of page faulting address (with the help of /proc/<pid>/maps)
=> mmaped area on disk

" code review for access to mmaped disk area
Conclusion

"commonly used application function used by high prio thread caused
access to mmaped area on disk

" application code restructuring to get rid of this access

<licensed under Creative Commons, BY-ND>
page 9 12.2008 Gernot Hillier, CT SE 2 © Siemens AG, Corporate Technology



	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9

